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Abstract Isopiestic vapor-pressure measurements were made for Li2SO4(aq) from 0.1069 

to 2.8190 mol·kg–1 at 298.15 K, and from 0.1148 to 2.7969 mol·kg–1 at 323.15 K, with 

NaCl(aq) as the reference standard. Published thermodynamic data for this system were 

reviewed, recalculated for consistency, and critically assessed. The present results and the 

more reliable published results were used to evaluate the parameters of an extended 

version of Pitzer’s ion-interaction model with an ionic-strength dependent third virial 

coefficient, as well as those of the standard Pitzer model, for the osmotic and activity 

coefficients at both temperatures. Published enthalpies of dilution at 298.15 K were also 

analyzed to yield the parameters of the ion-interaction models for the relative apparent 

molar enthalpies of dilution. The resulting models at 298.15 K are valid to the saturated 

solution molality of the thermodynamically stable phase Li2SO4·H2O(cr). Solubilities of 

Li2SO4·H2O(cr) at 298.15 K were assessed, and the selected value of m(sat.) = 3.13 ± 

0.04 mol·kg–1 was used to evaluate the thermodynamic solubility product Ks(Li2SO4·H2O, 

cr, 298.15 K) = (2.62 ± 0.19) and a CODATA-compatible standard molar Gibbs energy 

of formation 
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"
f
G (Li2SO4·H2O, cr, 298.15 K) = –(1564.6 ± 0.5) kJ·mol–1.  

 

Keywords Lithium sulfate · Aqueous solutions · Isopiestic measurements · Ion-
interaction model · Pitzer model · Solubility product · Standard thermodynamic properties 
 
Joseph A. Rard (corresponding author) 
Energy and Environment Directorate, Lawrence Livermore National Laboratory, 
University of California, Livermore, Ca 94550 
email: rardja@llnl.gov 
 
Simon L. Clegg 
School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, U.K. 
 
Donald A. Palmer 
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-
6110 



 
2 

 

1. Introduction 

Both Na2SO4 and K2SO4 occur widely in natural waters and are found in many evaporite 

deposits. Consequently, their thermodynamic properties have been widely studied and 

models are available that represent these thermodynamic properties over wide ranges of 

molality and temperature [1–3]. Thermodynamic data for the more rare alkali metal 

sulfates Rb2SO4(aq) and Cs2SO4(aq) are much less extensive. Isopiestic data are available 

only at 298.15 and 323.15 K for Rb2SO4(aq) and enthalpies of dilution are limited to 

298.15 K and are incomplete [4]. The available thermodynamic data for Cs2SO4(aq) 

include isopiestic results at 298.15 and 323.15 K [4] and from 383.14 to 498.19 K [5]. 

However, the enthalpies of dilution for Cs2SO4(aq) are very limited in extent and quality 

and there is an absence of heat capacities. Thus the thermodynamic properties in the 

region between the high temperature and low temperature isopiestic measurements have 

not been characterized. A similar situation exists for Li2SO4(aq) where there is a gap 

between the low-temperature thermodynamic measurements, summarized in reference 

[3], and the high-temperature isopiestic measurements of Holmes and Mesmer [5]. 

Because of the incomplete characterization of the thermodynamic properties of most 

of the aqueous alkali metal sulfates at intermediate temperatures, an extensive series of 

isopiestic measurements was made at Oak Ridge National Laboratory between 1985 and 

1997 at temperatures of 298.15 and 323.15 K. There were no isopiestic data available for 

the alkali metal sulfates at 323.15 K prior to these measurements. The results for 

Na2SO4(aq) [1], K2SO4(aq) [2], Rb2SO4(aq) and Cs2SO4(aq) [4] have already been 

published. In the present report new isopiestic data for Li2SO4(aq) are presented, 

published thermodynamic data are recalculated consistently and critically assessed, and 

the more reliable of these results are represented with Pitzer’s ion-interaction model [6] 

and with an extended form that has an ionic-strength dependent C-term as described by 

Archer [7].  
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2. Experimental 

The isopiestic experiments were performed at Oak Ridge National Laboratory (ORNL), 

at both T = 298.15 ± 0.003 and 323.15 ± 0.003 K, using a slightly modified version of the 

apparatus described by Rush and Johnson [8]. This apparatus, its operation, the 

equilibration times, the water purification method, and the experimental conditions and 

techniques are essentially identical to those described in previous reports [1,2,4]. Rard 

and Platford [9] give a detailed description of the isopiestic method with an emphasis on 

experimental aspects and possible errors.  

Eight different stock solutions of NaCl(aq) were used as the isopiestic reference 

standards.  The same NaCl(aq) reference standard solutions were also used in the 

Cs2SO4(aq) experiments [4], and the preparations and molality analyses of these NaCl(aq) 

stock solutions are described in that report and reference [1]. The methods used to analyze 

the molalities of the seven Li2SO4(aq) stock solutions are identical to those described for 

the Na2SO4(aq) stock solutions [1]. Table 1 summarizes the molalities of the individual 

NaCl(aq) and Li2SO4(aq) stock solutions and the method of determination of the molalities. 

Assumed molar masses are 58.4428 g·mol–1 for NaCl, 109.945 g·mol–1 for Li2SO4, and 

18.0153 g·mol–1 for H2O. All apparent masses were converted to masses using buoyancy 

corrections.  

The various Li2SO4(aq) stock solutions were prepared from Li2SO4·H2O(s) and water 

that was purified as described elsewhere [1]. Samples from three separate lots of Alfa 

Products (stated purity 99.8 %) and two lots of Aldrich Chemicals Gold Label (stated 

purity 99.999 %) Li2SO4·H2O(s) were used for the solution preparations. The stock 

solutions with molalities of m = 0.96408 and 0.95864 mol·kg–1 were prepared from Alfa 
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Products lot # 030982, stock solutions with m = 0.96320 and 0.97884 mol·kg–1 from Alfa 

Products lot # 011378, and the stock solution with m = 0.17134 mol·kg–1 from lot # 

030983. Aldrich Chemicals Gold Label lot # 2125DJ was used to prepare the stock solution 

with m = 0.83846 mol·kg–1 and lot # 012084LP the m = 1.0622 mol·kg–1 stock solution. 

Natural sources of lithium are mixtures of 6Li (with a molar mass of 6.015123 g·mol–1) 

and 7Li (with a molar mass of 7.016005 g·mol–1), with 7Li being the predominant isotope. 

The recommended molar mass of lithium from natural sources is 6.941 g·mol–1. However, 

many commercial sources of lithium salts are depleted in 6Li (which is selectively removed 

for use in production of tritium) and have a lithium molar mass that ranges up to 6.99 

g·mol–1. Thus, the molar mass of Li2SO4 can range between 109.945 g·mol–1 and 110.045 

g·mol–1. Unfortunately, commercial samples of lithium salts usually do not list the lithium 

isotopic composition. 

The number of moles of Li2SO4 in the analyzed samples of our stock solutions were 

determined either by gravimetric analysis by precipitation of the sulfate as BaSO4(s), or by 

analysis of the amount of lithium using cation-exchange chromatography followed by mass 

titration of the eluted H+ with NaOH(aq). Thus, the determined number of moles of Li2SO4 

does not depend on an assumed molar mass for Li. However, the mass fraction of H2O in 

each of these samples, which was calculated as the difference between the measured 

solution mass and the calculated mass of anhydrous Li2SO4, does depend on the assumed 

molar mass of Li2SO4. The resulting uncertainties in the reported isopiestic molalities in 

Tables 2 and 3 are negligible at the lowest concentrations of ≈0.1 mol·kg–1, but increase 

with increasing molality to 0.028 % at ≈2.8 mol·kg–1 (the highest studied molalities). This 

0.028 % uncertainty is smaller than the typical uncertainties resulting from the isopiestic 

equilibrations. 
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The molality-based osmotic coefficients φ of Li2SO4(aq) were calculated using the 

fundamental equation for isopiestic equilibrium: 

 φ = ν*m*φ */νm         (1) 

where ν = 3 is the stoichiometric ionization number and m the molality of Li2SO4(aq), and 

the corresponding quantities for the reference standard solution at isopiestic equilibrium are 

denoted with an asterisk. The osmotic coefficients of the NaCl(aq) reference standard 

solution at the experimental molalities and temperatures were calculated with the equation 

and parameters of Archer [7]. The experimental isopiestic molalities and calculated osmotic 

coefficients at 298.15 K are reported in Table 2 and at 323.15 K in Table 3. 

The experiments of most of the series involved measurements at a single temperature, 

but those of Series 4, 8, 10, and 13 included experiments at both 298.15 and 323.15 K. The 

ratio m(Li2SO4)/m(NaCl) at isopiestic equilibrium varies significantly with both 

concentration and temperature. The rather large uncertainties of the molalities of the first 

experiment each of Series 4 and 13 at 298.15 K are probably the result of the 25 K 

temperature change that occurred from the previous equilibration, without allowing 

sufficient extra time to reattain isopiestic equilibrium.  

A graphical comparison was made of the osmotic coefficients of Li2SO4(aq) at 298.15 K 

from Table 2 and at 323.15 from Table 3. This comparison indicates that the values of φ 

from Series 4 at both temperatures and the first experiment of Series 13 at 298.15 K are 

significantly lower than those from the other series of experiments (∆φ ≈ –0.01 to –0.03), 

and the two φ values from Series 12 at 323.15 K are considerably lower (∆φ ≈ –0.1). These 

values of φ were rejected as being erroneous. We note that Na2SO4(aq), Rb2SO4(aq), and 

Cs2SO4(aq) samples were also present for the Series 4 experiments and many of their 

osmotic coefficients were also rejected as being low [1,4], which suggests that there may 
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have been an error in the molality of the NaCl(aq) stock solution used as a reference 

standard for Series 4. The remaining experiments at 323.15 K (Series 8, 9, 9A, 10, 11, and 

13) are consistent, as are most of the series of experiments at 298.15 K (Series 3, 5, 6, 7, 8, 

and 10). Osmotic coefficients from Series 1 and 2 at 298.15 K are consistent with each 

other but are higher (∆φ ≈ +0.006 to +0.01) than those from the six consistent series. 

Because Series 1 and 2 involved the same NaCl(aq) and Li2SO4(aq) stock solutions, it is 

possible that the molality of one of these stock solutions is slightly in error. 

3. Analysis of published thermodynamic data for Li2SO4(aq) 

There are several previous studies that reported isopiestic data for Li2SO4(aq) at 298.15 

K. Robinson et al. [10] reported results from 0.07310 to 3.165 mol·kg–1 (near saturation) 

with KCl(aq) as reference standard. Michimoto et al. [11] reported isopiestic 

measurements with H2SO4(aq) as reference standard but did not list the equilibration 

molalities; however, these molalities (0.4938 to 1.8204 mol·kg–1) were later given by 

Majima et al. [12]. Filippov and Kalinkin [13] reported four osmotic coefficients from 

0.952 to 2.875 mol·kg–1 but did not give the molalities of the reference standard. Filippov 

et al. [14,15] reported isopiestic results from 0.6996 to 3.0403 mol·kg–1 with NaCl(aq) as 

reference solution; these studies include the detailed results for the four equilibrations 

reported by Filippov and Kalinkin [13] but give the equilibrium molalities to an 

additional significant figure. The isopiestic molality of Li2SO4(aq) in equilibrium with a 

NaCl(aq) solution of molality 3.7924 mol·kg–1 is given as m(Li2SO4) = 2.8764 mol·kg–1 

in reference [14] and as m(Li2SO4) = 2.8746 mol·kg–1 in reference [15], with the last two 

digits transposed. By comparison with the results reported in reference [13], m(Li2SO4) = 

2.8746 mol·kg–1 appears to be the correct molality. Baabor et al. [16] reported isopiestic 

data for the Li2SO4 + Na2SO4 + H2O system at 298.15 K, including the limiting binary 
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solutions, which could be used to calculate another set of osmotic coefficients for 

Li2SO4(aq) from 0.07350 to 2.6690 mol·kg–1 if Na2SO4(aq) were used as a provisional 

reference electrolyte. Baabor et al. [17] also reported isopiestic results for Li2SO4(aq) 

from 0.0802 to 2.5658 mol·kg–1 at 313.15 K and Holmes and Mesmer [5] reported 

isopiestic results from 383.14 to 498.19 K ranging up to 2.4 to 3.2 mol·kg–1 (depending 

on the temperature); both of these studies used NaCl(aq) as the reference standard. 

Filippov and Kalinkin [13] also reported that the water activity and molality of a 

saturated solution at 298.15 K were aw = 0.846 and m(sat.) = 3.123 mol·kg–1, 

respectively, which yields an osmotic coefficient of φ(sat.) = 0.9908. 

The osmotic coefficients of Li2SO4(aq) from isopiestic measurements at 298.15 K 

[10–12,14,15] were recalculated for consistency using current critical evaluations of the 

thermodynamic properties of the reference standards NaCl(aq) [7], KCl(aq) [18], and 

H2SO4(aq) [19]. 

Direct measurements of the vapor pressures of Li2SO4(aq) solutions of known molality 

have been reported by Pearce and Eckstrom [20] from 0.1 to 3.0944 mol·kg–1 at 298.15 

K, by Kangro and Groeneveld [21] from 0.5 to 3.0 mol·kg–1 at 293.15 and 298.15 K, and 

by Abdulagatov and Azizov [22] at molalities of 0.279, 0.886, 1.322, and 1.600 mol·kg–1 

and temperatures of 423.15 to 573.15 K (these last authors also cited other high-

temperature vapor pressure studies). Osmotic coefficients were calculated from the 

reported vapor pressures of the first two of these studies [20,21] by using Eq. (26) of 

Rard and Platford [9]. The vapor pressures of Abdulagatov and Azizov [22] were not 

reanalyzed because they are well above the temperature range being modeled. However, 

based on the comparison of results from various studies presented in their Figs. 9 and 10, 

there are large discrepancies among these high-temperature studies. 



 
8 

El Guendouzi et al. [23] reported water activities and osmotic coefficients for 

Li2SO4(aq) from 0.1 to 3.0 mol·kg–1 at 298.15 K from measurements by their hygrometric 

method. They estimated the uncertainties of their osmotic coefficients as being “at most, 

±0.006”. This imprecision is significantly larger than that usually obtained in isopiestic 

experiments. 

There are several published studies of the vapor pressures of saturated solutions of 

Li2SO4(aq). To calculate osmotic coefficients from these vapor pressures requires values 

of the saturated solution molalities at the experimental temperatures that are taken or 

interpolated from published sources rather that being measured, which could result in 

large discrepancies because of uncertainties in the saturated solution molalities (see 

below, Section 5). Applebey et al. [24] reported vapor pressures of saturated solutions 

from 298.45 to 373.50 K, Rockland [25] from 278.15 to 313.15 K, and Apleblat and 

Korin [26] from 282.15 to 322.25 K. The results of Rockland, which were reported as 

percent relative humidity to only two significant figures, yield  φ(sat.) = 0.96 using the 

selected saturated solution molality of m(sat.) = 3.131 mol·kg–1 (see below). Because of 

the low precision of the reported relative humidity measurements, this result was not 

considered further, but the osmotic coefficient agrees with the more consistent isopiestic 

results to Δφ = –0.04. 

A preliminary comparison was made of the osmotic coefficients at 298.15 K derived 

from isopiestic and direct vapor pressure measurements. Most of the osmotic coefficients 

from isopiestic studies [10,14,15], including the present results from Table 2 (excluding a 

few measurements as described above), are generally in good agreement. Osmotic 

coefficients from the isopiestic study of Majima et al. [11,12] agree with the more 

consistent isopiestic results to within Δφ = ± 0.01 except at the two highest molalities 
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where they are 0.015 to 0.03 lower; because of the low precision, these results were 

rejected.  

The hygrometric results of El Guendouzi et al. [23] are in general agreement with the 

isopiestic results but are more scattered, with most of their values falling within the 

Δφ = ± 0.006 uncertainty claimed by the authors (with one point being low by Δφ ≈ –

0.009), and Kangro and Groeneveld’s [21] vapor results are consistently lower by Δφ ≈ –

0.01. Most of the osmotic coefficients calculated from the vapor pressures of Pearce and 

Eckstrom [20] are within ≈0.02 of the isopiestic and hygrometric results up to 1.5 

mol·kg–1 (and are generally lower), but then show increasing significant molality-

dependent systematic deviations of Δφ ≈ –0.04 to ≈ –0.08. The osmotic coefficient of the 

saturated solution reported by Apelblat and Korin [26] at 298.15 K (based on their 

interpolation of their vapor pressures to this temperature), φ(sat.) = 1.174, is too high by 

Δφ ≈ 0.17 (17%). None of the osmotic coefficients from the studies discussed in this 

paragraph were included in the Archer and Pitzer model fits, described below, because of 

their low precision or systematic errors. 

Freezing temperature depressions for Li2SO4(aq) from 0.00704 to 1.0139 mol·kg–1 

have been reported by Indelli [27] that could be used to calculate osmotic coefficients at 

the freezing temperatures of the solutions. However, because of the lack of reliable heat 

capacities, it was not possible to make an accurate conversion of these results to osmotic 

coefficients at 298.15 K. 

Åkerlöf [28] reported Emfs for the following concentration cell without transport at 

298.15 K: 

Hg(l)|Hg2SO4(s)|Li2SO4(aq, m)|LixHg1–x(l)|Li2SO4(aq, mr)|Hg2SO4(s)|Hg(l) (A) 

For this cell the Emf is given by: 
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 E(cell A) = (RT/2F)ln{a(Li2SO4)/{ar(Li2SO4)} 

      = (3RT/2F)ln(mγ±/mrγ±,r)      (2) 

where m is the solution molality, a(Li2SO4) is the thermodynamic activity of Li2SO4(aq), 

γ± is the mean (molality-based) activity coefficient of Li2SO4(aq), and the corresponding 

quantities at the reference molality (mr = 0.05 mol·kg–1) are denoted with a subscripted r. 

Both molarity and molality concentrations were reported in this study. As noted by Rard 

et al. [1], the reported molalities are smaller than the molarities whereas they should be 

larger, and we assume that the two sets of concentrations should be reversed.  

Faverio et al. [29] reported Emfs at 298.15 K for the following electrochemical cell 

with a flowing lithium amalgam: 

LixHg1–x(l)|Li2SO4(aq, m)|Hg2SO4(s)|Hg(l)     (B) 

where x = 0.00493 is the mole fraction of Li in the amalgam. The Emf is given by 

 E(cell B) = E°(cell B) – (RT/2F)ln{a(Li2SO4)} 

      = E°(cell B) – (3RT/2F)ln{41/3(m/mol·kg–1)γ±}   (3) 

and the molalities range from 0.05 to 2.9 mol·kg–1. 

Fusi and Mussini [30] reported Emfs at 298.15 K for the following cell: 

 Pb(Hg, two phase)|PbSO4(s)|Li2SO4(aq, m)|Hg2SO4(s)|Hg(l)  (C) 

The Emf of this cell is independent of the molality and thus does not yield 

thermodynamic data for Li2SO4(aq). These measurements were used by the authors as 

part of their assessment of the reliability of the Pb(Hg, two phase)|PbSO4(s) electrode. 

As described by Åkerlöf [28], the LixHg1–x(l) electrode is subject to oxidation of Li by 

H+(aq) if the solution is acidic, whereas the Hg2SO4(s) electrode can become 

contaminated with a Hg(I) hydroxysulfate if the solution pH is neutral or alkaline. Both 

of these effects can affect the measured Emfs. The second problem has been discussed in 
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more detail by Rard and Clegg [33] who also noted that formation of the yellow 

hydroxysulfate could be suppressed by protecting the electrode system from exposure to 

light. 

Mussini et al. [31] reported Emfs for Li2SO4(aq) solutions from 0.1 to 3.0 mol·kg–1 at 

298.15 K for a concentration cell with transport, which was used by the authors to derive 

the transference number of the Li+ ion. Sircar et al. [32] reported similar results at 308.15 

K. If highly reliable transference numbers were to become available from some 

independent method, then these Emfs could be used to derive relative activity coefficients 

for Li2SO4(aq). 

The molar enthalpies of dilution of Li2SO4(aq), ΔdilHm, have been reported in several 

studies. The enthalpies of dilution are related to the relative apparent molar enthalpies Lφ 

by:   

ΔdilHm = Lφ(mf) – Lφ(mi)        (4) 

where mi is the initial molality before mixing with water and mf is the final molality after 

dilution. Enthalpies of dilution at 298.15 K have been reported at 298.15 K by Lange and 

Streeck [34] from 1.645 × 10–4 to 0.1 mol·L–1, by Thompson et al. [35] from 0.0914 to 

3.00 mol·kg–1, by Solov’eva et al. [36] from 0.278 to 3.08 mol·kg–1, and by Frolov et al. 

[37] from 0.05 to 2.99 mol·kg–1. Frolov et al. also reported enthalpies of dilution from 

0.08 to 3.00 mol·kg–1 at 283.15 K and from 0.20 to 2.99 mol·kg–1 at 313.15 K. Leung and 

Millero [38] reported enthalpies of dilution from 0.17278 to 0.91859 mol·kg–1 at 303.15 

K. The concentrations reported by Lange and Streeck [34] were converted to molalities 

using the densities reported by Pearce and Eckstrom [20]. 

Apelblat [39] reported enthalpies of solution at 298.15 K of the thermodynamically 

stable phase Li2SO4·H2O(s) (corrected for a slight water excess), along with those of the 
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anhydrous phase Li2SO4(s). Apleblat’s standard enthalpy of solution of Li2SO4(cr) at 

infinite dilution, 

! 

" solHm

#
(Li2SO4, cr, 298.15 K) = –(30.502 ± 0.170) kJ·mol–1, is in 

complete agreement with the NIST-JANAF assessment [40], 

! 

" solHm

#
(Li2SO4, cr, 298.15 K) = –(30.5 ± 0.4) kJ·mol–1, which is based on older 

literature data.  

Apelblat [39] also reported heat capacities cp of 0.06233 to 0.9409 mol·kg–1 

Li2SO4(aq) at 298.15 K. These values of cp were first normalized to the heat capacity of 

water calculated from Hill’s equation of state [41] and then converted to the apparent 

molar heat capacities Cp,φ of Li2SO4 in the solutions using the relation: 

! 

Cp," = Mcp +{
cp # cp,1

m
}        (5) 

where M = 109.945 g·mol–1 is the molar mass of Li2SO4 and cp,1 is the heat capacity per 

gram of the solvent (H2O). Apelblat [39] stated that these heat capacities were: “not 

accurate enough to calculate Cp,m,φ values especially for molalities less than m = 0.2 

mol·kg–1”. The calculated values of Cp,φ at the two lowest molalities appear to be too 

negative by about 150 J·K–1·mol–1 and those from m = 0.2811 to 0.9409 mol·kg–1 are 

scattered by about 40 J·K–1·mol–1. Because of their low accuracy and precision, these 

results were not considered further. 

Table 4 summarizes the results from these studies reporting thermodynamic data for 

Li2SO4(aq) including the type of measurement, molality range and temperature(s) 

studied, and number of data points. 

 

4. Formation of 

! 

4

"
LiSO  ion-pairs in Li2SO4(aq) solutions 

There are several studies that report equilibrium constants for the following reaction: 
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! 

Li+(aq) + SO4

2"(aq)
#

$
LiSO4

"

(aq)      (6) 

Reardon [42] reported results that yield an association constant 

! 

4

"
Ka (LiSO ) = 5.9 ± 0.7 

derived from activity coefficients and cited a literature value of 

! 

4

"
Ka (LiSO ) = 4.4 from 

electrical conductance measurements, and Fisher and Fox [43] reported results that give 

! 

4

"
Ka (LiSO ) = 10.4 ± 0.5 from electrical conductance measurements, all at 298.15 K. 

Daniele et al. [44] reported results that yield 

! 

4

"
K(LiSO ) = 13.2 at 310.15 K from 

potentiometric measurements. All of these values are fairly uncertain because of the 

sensitivity of the derived results to the approximate methods used estimate ionic activity 

coefficients. However, it was previously found for the other alkali metal sulfates that the 

effect of these weak ion-pairs can be neglected when analyzing the thermodynamic 

properties with Pitzer’s ion-interaction model [1,2,4,6], and thus the presence of these 

ion-pairs will also be neglected for Li2SO4(aq). 

 

5. Results and evaluation of the ion-interaction model parameters 

We represented the available thermodynamic data for Li2SO4(aq) using an extended form 

of Pitzer’s ion-interaction model [6] that was described by Archer [7]. For the molality-

based osmotic coefficient of Li2SO4(aq), the model equation has the form: 

 

φ – 1 = –2AφI1/2/(1 + bI1/2) + (4/3)mBφ(Li,SO4) + (16/3) m2CTφ(Li,SO4)   (7) 

 

where m is the stoichiometric molality, I = 3m is the ionic strength, b = 1.2 kg1/2·mol–1/2, 

and Aφ is the Debye-Hückel limiting-law slope for the osmotic coefficient.  The ionic-

strength dependent functions Bφ(Li,SO4) and CTφ(Li,SO4) are defined by:  
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Bφ(Li,SO4) = β(0)(Li,SO4) + β(1)(Li,SO4)·exp(–αI1/2)     (8) 

and 

CTφ(Li,SO4) = C(0)(Li,SO4) + C(1)(Li,SO4)·exp(–ωI1/2)    (9) 

 

The value of the first exponential coefficient is generally fixed at α = 2.0 kg1/2·mol–1/2 

[6], although smaller values have been used previously for the alkali metal sulfates [5].  

The corresponding expression for the natural logarithm of the mean activity coefficient γ± 

of Li2SO4(aq) is: 

 

ln γ± = –2Aφ{I1/2/(1 + bI1/2) + (2/b)ln(1 + bI1/2)} + (4/3)m[2β(0)(Li,SO4)  

+ 2{β(1)(Li,SO4)/α2I}{1 – (1 + αI1/2 – α 2I/2)exp(–αI1/2)}]  

+ (8/3)m2[3C(0)(Li,SO4) + {4C(1)(Li,SO4) /(ω4I2)}{6 – (6 + 6ωI1/2 + 3ω2I + ω3I3/2 

– ω4I2/2)exp(–ωI1/2)}]       (10) 
 

The expressions for the relative apparent molar enthalpy and apparent molar heat 

capacity are, respectively: 

! 

"L = (6 HA /2b)ln(1+ bI
1/ 2
) # 4RT 2{mBL

(Li,SO4 ) + 2m
2
C

L
(Li,SO4 )}  (11) 

! 

p,"C = p,"
o

C + (6 CA /2b)ln(1+ bI
1/ 2
) # 4RT 2{mBC

(Li,SO4 ) + 2m
2
C
C
(Li,SO4 )} (12) 

where R = 8.31451 J·K–1·mol–1 is the gas constant, T is the absolute temperature, and 

where: 

! 

L
B (Li,SO4 ) ={"#

(0)(Li,SO4)

"T
}p + 2{"#

(1)(Li,SO4 )

"T
}p{1$ (1+%I1/ 2)exp($%I1/ 2)} /(% 2

I)} 

           (13) 

! 

L
C (Li,SO4 ) ={"C

(0)(Li,SO4)

"T
}p + 4{"C

(1)(Li,SO4 )

"T
}p{6 # (6 + 6$I1/ 2 + 3$ 2

I +$ 3
I
3 / 2)exp(#$I1/ 2)} /($ 4

I
2)}

           (14) 
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! 

C
B (Li,SO4 ) ={"

2# (0)(Li,SO4)

"T 2
}p + (2 /T){"#

(0)(Li,SO4 )

"T
}p + 2[{"

2# (1)(Li,SO4 )

"T 2
}p

+ (2 /T){"#
(1)(Li,SO4 )

"T
}p][{1$ (1+%I1/ 2)exp($%I1/ 2)}]/(% 2

I)}

 (15) 

! 

C
C (Li,SO4 ) ={"

2
C
(0)(Li,SO4)

"T 2
}p + (2 /T){"C

(0)(Li,SO4 )

"T
}p + 4[{"

2
C
(1)(Li,SO4 )

"T 2
}p

+ (2 /T){"C
(1)(Li,SO4 )

"T
}p][{6 # (6 + 6$I1/ 2 + 3$ 2

I +$ 3
I
3 / 2)exp(#$I1/ 2)}]/($ 4

I
2)

 

           (16) 

 

In these equations AH and AC are the Debye-Hückel limiting law slopes for enthalpy and 

heat capacity, respectively. Values of Aφ, AH, and AC for water were calculated with the 

Chebychev polynomial given by Clegg et al. in their Appendix II [19] that is based on 

Archer and Wang’s [45] evaluation of the Debye-Hückel limiting law slopes.  

Because of the lack of reliable heat capacities for Li2SO4(aq), it was not possible to 

evaluate the second temperature derivatives of the ion-interaction model parameters, i.e., 

those for Eqs. (12), (15), and (16). In principle, if values of Lφ are available at more than 

one temperature, then they could be used to derive approximate values of Cp,φ. Although 

enthalpies of dilution ΔdilHm are available at 283.15 and 313.15 K to high molalities [37], 

and at 303.15 K to moderate molalities [38], they must be extrapolated to infinite dilution 

to yield Lφ. However, the final dilution molalities of these studies do not extend below 

0.08 to 0.20 mol·kg–1, and comparison of the more extensive results at 298.15 K [34–37] 

indicates that the corrections to infinite dilution will be around 2 to 3 kJ·mol–1. This 

exceeds the size of many of the measured ΔdilHm values, and thus the extrapolations to 

infinite dilution could yield large uncertainties in Lφ. In addition, the most extensive 

enthalpies of dilution are from the study of Frolov et al. [37], and our comparison of their 

results at 298.15 to those of three other studies [34–36] indicates that the data of Frolov et 
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al. are less reliable. Consequently, our model fits were restricted to 298.15 K (osmotic 

coefficients and enthalpies of dilution) and 323.15 K (osmotic coefficients). 

For the evaluation of the model parameters of Eqs. (7) through (10) at 298.15 K, equal 

weights were given to the present isopiestic results reported in Tables 2, of Robinson et al. 

[10] and of Filippov et al. [14,15], except for a few outliers as described in Tables 2 and 4. 

Figure 1(a) shows these osmotic coefficients as a function of the square root of molality 

and Fig. 1(b) the deviations of the experimental osmotic coefficients from the extended 

ion-interaction (Archer) model for Li2SO4(aq) with the evaluated parameters reported in 

Table 5. It can be seen from Fig. 1(b) that the values of φ from these four studies are in 

very good agreement above 1 mol·kg–1, but the variations among them become slightly 

larger at lower molalities where φ becomes very sensitive to very small differences in the 

water activity. For example, an uncertainty of Δφ = ±0.005 corresponds to an uncertainty 

of the water activity of Δaw = ±0.00048 at m = 2.0 mol·kg–1, Δaw = ±0.00013 at m = 0.5 

mol·kg–1, but is only Δaw = ±0.00003 at m = 0.1 mol·kg–1.  

Figure 2 shows the deviations of the Li2SO4(aq) osmotic coefficients at 298.15 K for 

non-isopiestic measurements of the vapor pressure [20,21,23,25]. These osmotic 

coefficients were not included in the model fits for reasons discussed in Section 3. Of 

these studies, the hygrometric results of El Guendouzi et al. [23] agree best with the 

isopiestic data. 

Figure 3(a) shows our osmotic coefficients at 323.15 K from Table 3 as a function of 

the square root of molality and Fig. 3(b) the deviations of these experimental osmotic 

from the extended ion-interaction model whose parameters are reported in Table 5. 

In Fig. 4 we shown the deviations of the Emfs for cells (A) and (B) at 298.15 K from 

values calculated with the ion-interaction model parameters of Table 5. Although these 
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Emfs were not used in the evaluation of the model parameters, the Emfs of Åkerlöf [28] 

are clearly consistent with our model within their large scatter. The Emfs of Faverio et al. 

[29] are more precise than those of Åkerlöf but show a slight systematic trend with 

molality. The model parameters of Table 5 were used with all of the reported Emfs of 

Faverio et al. to yield E° = 2.66960 ± 0.00057 V for cell B. 

Figure 5(a) shows the relative apparent molar enthalpies Lφ of Li2SO4(aq) as a function 

of the square root of the initial molality, where the values for the final molality were 

calculated from the optimized extended ion-interaction model whose parameters are 

reported in Table 5, and Fig. 5(b) shows the deviations of the experimental enthalpies of 

dilution from the extended ion-interaction (Archer) model. 

Table 6 reports smoothed values of φ, aw, and γ± of Li2SO4(aq) at 298.15 and 323.15 K, 

and Lφ at 298.15 K that were calculated using the parameters of the extended ion-

interaction model reported Table 5. A comparison of our values of φ to those of Robinson 

and Stokes [50] at 298.15 K shows good agreement with Δφ ≤ 0.004 for m = 0.2 to 3.0 

mol·kg–1, which is consistent with the differences in source data used and the revision in 

the osmotic coefficients of the KCl(aq) reference standard used for this earlier evaluation. 

Larger differences are observed from the more recent evaluation of Goldberg [51] at low 

molalities, which probably resulted from a mismatch between the isopiestic data and 

freezing temperature results used in his model. Because of the lack of heat capacities for 

Li2SO4(aq), Goldberg assumed that they were equal to those of Na2SO4(aq), which may 

have introduced significant inaccuracies when converting freezing temperature 

depressions to osmotic coefficients at 298.15 K. 

Parameters for the standard 3-parameter form of Pitzer’s model [6] were also evaluated 

for Li2SO4(aq) and are reported in the footnote to Table 5. The C(Li,SO4) parameters of 
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this model is defined by Eq. (53) of his review article [6]. Based on comparison of the 

standard deviations for the fits, the extended 4-parameter model gives a more accurate 

representation of the input data than the 3-parameter model, which is expected because of 

the different number of model parameters. 

 

6. Evaluation of the thermodynamic solubility product and standard 

thermodynamic properties of Li2SO4·H2O(cr) 

A value of the standard Gibbs energy of solution of the thermodynamically-stable phase 

Li2SO4·H2O(cr), 

! 

m

o
"
sol
G (Li2SO4·H2O, cr, 298.15 K), can be calculated from the mean 

activity coefficient γ±(sat.) of Li2SO4(aq) at the saturated solution molality, m(sat.), and 

the water activity aw(sat.) using the following equation: 

! 

m

o
"
sol
G (Li2SO4·H2O, cr, 298.15 K) = –RTlnKs 

            = –RTln[4{(m(sat.)/mol·kg–1}3{γ±}3aw(sat.)] (17) 

Values of the thermodynamic solubility product, Ks = 4{(m(sat.)/mol·kg–1}3{γ±}3aw(sat.), 

and 

! 

m

o
"
sol
G (Li2SO4·H2O, cr, 298.15 K) can be calculated from the parameters of the 

extended ion-interaction model reported in Table 5 once the saturated solution molality 

m(sat.) has been evaluated. 

Reported saturated solution molalities at 298.15 K are m(sat.) = 3.0944 mol·kg–1 [20] 

and m(sat.) = 3.123 mol·kg–1 [13]. Solubilities reported in other studies as mass-% of 

anhydrous solid were converted to molalities assuming a molar mass of 109.945 g·mol–1 

for Li2SO4. Linke [46] tabulated results from three older studies that yield m(sat.) = 3.113, 

3.161, and 3.144 mol·kg–1, Khripin’s [47] results yield m(sat.) = 3.087 mol·kg–1, and 

Shevchuk and Ushakov’s results [48] yield m(sat.) = 3.112 mol·kg–1. There is a fairly 

large variation among these values: Δm(sat.) = 0.074 mol·kg–1 (2.4 %). This variation is 
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much larger that that expected from uncertainties in the analysis of the saturation solution 

molality, which is typically done gravimetrically by precipitation of the sulfate as 

BaSO4(s) or by dehydration to form anhydrous Li2SO4(s).  

Solubility experiments are typically performed by dissolving the solid phase in water or 

“saturation from below”, which could result in slightly low apparent saturation molalities 

if insufficient time were allowed for the solution plus solid phase to reach thermodynamic 

equilibrium. We thus assume that the two lowest saturation molalities [20,47] are 

erroneously low, and averaged the remaining five values to yield the recommended result 

of m(sat.) = 3.131 ± 0.042 mol·kg–1, where the assigned uncertainty is the 95-% 

confidence limit. The water activity at this saturation molality, aw(sat.) = 0.84405 ± 

0.00084, was calculated with the parameters of Table 5, where the 95-% confidence limit 

uncertainty is based on the standard error for the osmotic coefficient fit multiplied by 1.96. 

Similarly, the activity coefficient of the saturated solution, assuming a 2 % uncertainty, is 

γ±(sat.) = 0.2954 ± 0.0059. Combining these results, and using Eq. (17), yields Ks = 2.617 

± 0.193 and 

! 

m

o
"
sol
G (Li2SO4·H2O, cr, 298.15 K) = –(2.385 ± 0.183) kJ·mol–1. 

Apelblat [39] reported fourteen enthalpies of solution for Merck Suprapure 

Li2SO4·H2O(cr) and eight for Alfa Inorganics Ultrapure Li2SO4·H2O(cr). Extrapolating 

these results to infinite dilution using the extended ion-interaction model parameters of 

Table 5 yields values of 

! 

m

o
"
sol
H (Li2SO4·H2O, cr, 298.15 K) = –(17.830 ± 0.155) kJ·mol–1 

and –(17.907 ± 0.149) kJ·mol–1, respectively, where the uncertainties are the 95-% 

confidence limits. Our recommended value is the average of these two results weighted by 

the number of measurements: 

! 

m

o
"
sol
H (Li2SO4·H2O, cr, 298.15 K) = –(17.86 ± 0.15) 

kJ·mol–1. Combining this result with the value of 

! 

m

o
"
sol
G (Li2SO4·H2O, cr, 298.15 K) given 
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in the preceding paragraph then yields 

! 

m

o
"
sol
S (Li2SO4·H2O, cr, 298.15 K) = –(51.90 ± 

0.80) J·K–1·mol–1. 

Combining these results with the CODATA [49] recommended values for the standard 

thermodynamic properties of Li+(aq), 

! 

SO
4

2- (aq), and H2O(l) yields 

! 

m

o

"
f
G (Li2SO4·H2O, cr, 

298.15 K) = –(1564.60 ± 0.51) kJ·mol–1, 

! 

m

o

"
f
H (Li2SO4·H2O, cr, 298.15 K) = –(1734.25 ± 

0.46) kJ·mol–1, and 

! 

m

o

S (Li2SO4·H2O, cr, 298.15 K) = (164.83 ± 0.94) J·K–1·mol–1. These 

results are in good agreement with those reported in the NBS tables [52]. 
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Table 1 Molalities of the NaCl(aq) and Li2SO4(aq) stock solutions 

Series m(NaCl)/ 

mol·kg–1 

m(NaCl)/ 

mol·kg–1 

m(Li2SO4)/ 

mol·kg–1 

m(Li2SO4)/ 

mol·kg–1 

1,2 0.9748 a  0.96408 b  

3 0.9852 a  0.95864 b,d  

4 1.0922 a  0.83846 c  

5 0.9868 a 1.1228 a 0.96320 c  

6 0.9868 a  0.96320 c  

7 1.1228 a  0.96320 c  

8, 11, 12 0.19580 a  0.17134 c  

9, 10 0.9869 a  0.96320 c  

13 0.91218 a  1.0622 c 0.97884 c 
a The source of the NaCl samples and methods of determining the molalities of 

these NaCl(aq) stock solutions were reported previously [1,4]. 
b These two Li2SO4(aq) stock solutions were analyzed gravimetrically for the 

sulfate concentration by precipitation as BaSO4(s). 
c These five Li2SO4(aq) stock solutions were analyzed for the lithium 

concentration with cation-exchange chromatography followed by mass titration of 

the eluted H+ with NaOH(aq). 
d This result is from two separate gravimetric analyses as BaSO4(s), yielding an 

average of m(Li2SO4) = 0.95864 ± 0.00009 mol·kg–1. Two later analyses by cation 

exchange followed by mass titration of the eluted H+ yielded an average of 

m(Li2SO4) = 0.9583 ± 0.0001 mol·kg–1.  
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Table 2 Isopiestic molalities of the NaCl(aq) reference standard, m(NaCl), and of 

Li2SO4(aq), m(Li2SO4), and the corresponding osmotic coefficients φ (NaCl) and 

φ(Li2SO4), at 298.15 K 

m(NaCl)/mol·kg–1 φ (NaCl) a m(Li2SO4)/mol·kg–1 φ(Li2SO4) 

Series 1 

1.0457 ± 0.0001 0.9390 0.83052 ± 0.00060 0.7882 

1.0286 ± 0.0003 0.9383 0.81702 ± 0.00020 0.7875 

0.9500 ± 0.0000 0.9352 0.75354 ± 0.00017 0.7860 

0.8672 ± 0.0004 0.9321 0.68658 ± 0.00014 0.7849 

0.7686 ± 0.0003 0.9287 0.60733 ± 0.00050 0.7836 

0.6828 ± 0.0004 0.9261 0.53833 ± 0.00010 0.7831 

0.3776 ± 0.0003 0.9205 0.29595 ± 0.00007 0.7830 

0.2731 ± 0.0001 0.9212 0.21228 ± 0.00014 0.7901 

Series 2 

0.6304 ± 0.0004 0.9247 0.49833 ± 0.00020 0.7798 

0.6150 ± 0.0004 0.9243 0.48558 ± 0.00018 0.7804 

0.5942 ± 0.0001 0.9238 0.46910 ± 0.00004 0.7801 

0.4630 ± 0.0001 0.9213 0.36374 ± 0.00001 0.7818 

0.3913 ± 0.0003 0.9206 0.30607 ± 0.00010 0.7846 

Series 3 

3.3794 ± 0.0010 1.0742 2.57735 ± 0.00109 0.9390 

3.2480 ± 0.0001 1.0653 2.48425 ± 0.00126 0.9285 

2.4919 ± 0.0003 1.0162 1.94278 ± 0.00059 0.8689 

1.9843 ± 0.0005 0.9860 1.56533 ± 0.00056 0.8332 

1.6418 ± 0.0009 0.9672 1.30464 ± 0.00024 0.8115 

1.5937 ± 0.0019 0.9647 1.26715 ± 0.00173 0.8089 

1.2454 ± 0.0004 0.9477 0.99407 ± 0.00019 0.7916 

1.2080 ± 0.0010 0.9460 0.96522 ± 0.00086 0.7893 

1.0843 ± 0.0001 0.9406 0.86693 ± 0.00023 0.7843 

Series 4 

1.3439 ± 0.0056 0.9523 1.11759 ± 0.00458 0.7634 (w = 0) 

1.3167 ± 0.0001 0.9510 1.09603 ± 0.00031 0.7617 (w = 0) 
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Series 5 

2.4151 ± 0.0001 

2.4143 ± 0.0003 

1.0114 

1.0114 

1.89333 ± 0.00024 0.8601 

0.8598 

1.7736 ± 0.0002 

1.7729 ± 0.0002 

0.9743 

0.9742 

1.41017 ± 0.00019 0.8169 

0.8165 

1.1943 ± 0.0004 

1.1937 ± 0.0009 

0.9454 

0.9454 

0.95712 ± 0.00003 0.7865 

0.7860 

1.1854 ± 0.0005 

1.1856 ± 0.0001 

0.9450 

0.9450 

0.95183 ± 0.00035 0.7846 

0.7847 

Series 6 

3.7110 ± 0.0003 1.0972 2.81904 ± 0.00079 0.9629 

3.6820 ± 0.0024 1.0952 2.79853 ± 0.00133 0.9606 

3.5271 ± 0.0025 1.0844 2.69070 ± 0.00130 0.9476 

3.1782 ± 0.0023 1.0606 2.44503 ± 0.00113 0.9190 

2.9130 ± 0.0003 1.0430 2.25580 ± 0.00028 0.8979 

2.7324 ± 0.0012 1.0313 2.12548 ± 0.00075 0.8839 

2.0315 ± 0.0009 0.9887 1.60666 ± 0.00042 0.8334 

1.4164 ± 0.0004 0.9558 1.13251 ± 0.00022 0.7969 

1.0872 ± 0.0004 0.9408 0.87164 ± 0.00036 0.7823 

0.8836 ± 0.0002 0.9327 0.70808 ± 0.00012 0.7759 

Series 7 

1.2399 ± 0.0010 0.9475 0.99337 ± 0.00088 0.7884 

0.8279 ± 0.0003 0.9307 0.66321 ± 0.00045 0.7746 

0.7054 ± 0.0001 0.9268 0.56415 ± 0.00006 0.7725 

0.6407 ± 0.0002 0.9249 0.51163 ± 0.00017 0.7722 

0.5176 ± 0.0002 0.9221 0.41226 ± 0.00026 0.7718 

0.4231 ± 0.0007 0.9208 0.33535 ± 0.00041 0.7745 

0.4177 ± 0.0001 0.9208 0.33099 ± 0.00013 0.7746 

0.3048 ± 0.0005 0.9207 0.23968 ± 0.00041 0.7806 (w = 0) 

0.2931 ± 0.0004 0.9209 0.23022 ± 0.00005 0.7816 

0.2876 ± 0.0005 0.9209 0.22709 ± 0.00021 0.7775 

0.2561 ± 0.0001 0.9215 0.20030 ± 0.00020 0.7855 
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0.2520 ± 0.0004 0.9216 0.19711 ± 0.00032 0.7855 

0.2101 ± 0.0004 0.9230 0.16344 ± 0.00025 0.7910 

0.2004 ± 0.0004 0.92345 0.15565 ± 0.00028 0.7926 

Series 8 

0.2959 ± 0.0005 0.9208 0.23205 ± 0.00014 0.7828 

0.2500 ± 0.0004 0.9217 0.19538 ± 0.00014 0.7862 

0.2300 ± 0.0003 0.9223 0.17942 ± 0.00011 0.7882 

0.2021 ± 0.0003 0.9234 0.15717 ± 0.00019 0.7916 

0.1395 ± 0.0001 0.9275 0.10698 ± 0.00025 0.8063 

0.1394 ± 0.0002 0.9275 0.10688 ± 0.00004 0.8065 

Series 10 

0.5046 ± 0.0001 0.9219 0.40111 ± 0.00016 0.7732 

0.4945 ± 0.0004 0.9217 0.39234 ± 0.00007 0.7745 

Series 13 

0.6316 ± 0.0016 0.9247 0.51121 ± 0.00322 

0.51199 ± 0.00289 

0.7616 (w = 0) 

0.7605 (w = 0) 

0.6185 ± 0.0001 0.9244 0.49390 ± 0.00007 

0.49445 ± 0.00004 

0.7717 

0.7709 

a Osmotic coefficients for the NaCl(aq) reference standards were calculated using the 

equations and parameters reported by Archer [7]. Points given zero weight in the ion-

interaction model parameter evaluations are denoted with (w = 0). 
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Table 3 Isopiestic molalities of the NaCl(aq) reference standard, m(NaCl), and of 

Li2SO4(aq), m(Li2SO4), and the corresponding osmotic coefficients φ (NaCl) and 

φ(Li2SO4), at 323.15 K 

m(NaCl)/mol·kg–1 φ (NaCl) a m(Li2SO4)/mol·kg–1 φ(Li2SO4) 

Series 4 
1.2809 ± 0.0009 0.9572 1.09604 ± 0.00103 0.7458 (w = 0) 

1.2019 ± 0.0007 0.9531 1.02630 ± 0.00108 0.7441 (w = 0) 

1.1080 ± 0.0006 0.9483 0.94349 ± 0.00087 0.7425 (w = 0) 

1.1079 ± 0.0006 0.9483 0.94342 ± 0.00089 0.7424 (w = 0) 

0.5222 ± 0.0003 0.9240 0.43031 ± 0.00011 0.7476 (w = 0) 

0.5186 ± 0.0014 0.9239 0.42624 ± 0.00011 0.7494 (w = 0) 

Series 8 

0.1981 ± 0.0005 0.9222 0.15548 ± 0.00020 0.7833 

0.1477 ± 0.0003 0.9250 0.11480 ± 0.00026 0.7934 

Series 9 

3.4603 ± 0.0043 1.0913 2.79692 ± 0.00225 0.9001 

3.1761 ± 0.0013 1.0725 2.57910 ± 0.00033 0.8805 

3.1708 ± 0.0021 1.07215 2.57503 ± 0.00069 0.8801 

2.3692 ± 0.0016 1.0206 1.94647 ± 0.00059 0.8282 

2.3161 ± 0.0036 1.0173 1.90305 ± 0.00112 0.8254 

1.4687 ± 0.0005 0.9673 1.21436 ± 0.00075 0.7799 

1.4467 ± 0.0031 0.9661 1.19438 ± 0.00183 0.7801 

1.4075 ± 0.0023 0.9639 1.16333 ± 0.00102 0.7775 

1.3760 ± 0.0020 0.9622 1.13737 ± 0.00082 0.7761 

Series 9A 

3.1578 ± 0.0015 1.0713 2.56462 ± 0.00058 0.8794 

2.9852 ± 0.0023 1.0600 2.43176 ± 0.00048 0.8675 

2.7751 ± 0.0024 1.0464 2.26713 ± 0.00074 0.8539 

2.4414 ± 0.0010 1.0251 2.00387 ± 0.00040 0.8326 

2.3322 ± 0.0049 1.0183 1.91442 ± 0.00098 0.8270 

2.2597 ± 0.0008 1.0138 1.85891 ± 0.00019 0.8216 
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1.9897 ± 0.0009 0.9973 1.64146 ± 0.00022 0.8059 

1.7695 ± 0.0006 0.9843 1.46208 ± 0.00005 0.7942 

1.6461 ± 0.0004 0.9772 1.36084 ± 0.00013 0.7880 

1.4902 ± 0.0000 0.9685 1.23216 ± 0.00002 0.7809 

1.3349 ± 0.0000 0.9600 1.10141 ± 0.00071 0.7757 

1.1763 ± 0.0005 0.9518 0.97075 ± 0.00034 0.7689 

1.0740 ± 0.0003 0.9467 0.88498 ± 0.00016 0.7659 

1.0532 ± 0.0016 0.9456 0.86790 ± 0.00415 0.7650 

Series 10 

1.1036 ± 0.0004 0.9481 0.91063 ± 0.00033 0.7660 

0.9033 ± 0.0003 0.9386 0.74283 ± 0.00010 0.7609 

0.7190 ± 0.0002 0.9308 0.58824 ± 0.00014 0.7585 

0.5896 ± 0.0003 0.9261 0.47951 ± 0.00003 0.7591 

0.4751 ± 0.0006 0.9228 0.38412 ± 0.00003 0.7609 

Series 11 

0.9010 ± 0.0018 0.9385 0.74311 ± 0.00055 0.7586 

0.6667 ± 0.0011 0.9288 0.54561 ± 0.00078 0.7566 

0.4959 ± 0.0005 0.9233 0.40234 ± 0.00014 0.7587 

0.3691 ± 0.0004 0.9208 0.29663 ± 0.00019 0.7638 

0.2775 ± 0.0002 0.9205 0.21996 ± 0.00021 0.7742 

0.2653 ± 0.0001 0.9206 0.21051 ± 0.00011 0.7735 

Series 12 

0.4486 ± 0.0002 0.9221 0.42257 ± 0.00017 0.6526 (w = 0) 

0.4218 ± 0.0001 0.9216 0.39620 ± 0.00004 0.6541 (w = 0) 

Series 13 

2.1854 ± 0.0002 1.0092 1.80494 ± 0.00047 

1.80453 ± 0.00264 

0.8146 

0.8148 

1.6856 ± 0.0010 0.9795 1.39474 ± 0.00089 

1.39510 ± 0.00107 

0.7892 

0.7890 

1.0187 ± 0.0022 0.9440 0.84021 ± 0.00139 

0.84074 ± 0.00068 

0.7630 

0.7625 

0.6175 ± 0.0002 0.9270 0.50333 ± 0.00030 0.7582 
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0.50394 ± 0.00006 0.7573 

0.4603 ± 0.0001 0.9224 0.37192 ± 0.00006 

0.37208 ± 0.00007 

0.7611 

0.7607 

0.2429 ± 0.0000 0.9209 0.19187 ± 0.00012 

0.19201 ± 0.00010 

0.7772 

0.7767 

a Osmotic coefficients for the NaCl(aq) reference standards were calculated using the 

equations and parameters reported by Archer [7]. Points given zero weight in the ion-

interaction model parameter evaluations are denoted with (w = 0). 
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Table 4 Summary by property of available thermodynamic studies yielding the osmotic 

coefficient, activity coefficient, relative enthalpy, or heat capacity of Li2SO4(aq) 

! 

m

mol " kg#1
 

! 

T

K
 

No. of data 

points 

Property a Relative 

weight b 

Reference 

0.0731–3.165 298.15 31 φ(isopiestic) 1 (2) Robinson et al. [10] 

0.4938–1.8204 298.15 7 φ(isopiestic) 0 Majima et al. [11,12] 

m(sat.) = 3.123 298.15 1 φ(isopiestic) 0 Filippov and Kalinkin [13] 

0.6996–3.0403 298.15 17 φ(isopiestic) 1 Filippov et al. [14,15] 

0.0735–2.6690 298.15 25 φ(isopiestic) n.a. Baabor et al. [16] 

0.0802–2.5658 313.15 20 φ(isopiestic) n.a. Baabor et al. [17] 

0.5401–2.6736 383.14 30 φ(isopiestic) n.a. Holmes and Mesmer [5] 

0.5995–2.5303 413.23 18 φ(isopiestic) n.a. Holmes and Mesmer [5] 

0.5538–2.5981 443.16 14 φ(isopiestic) n.a. Holmes and Mesmer [5] 

0.6617–2.3760 473.17 21 φ(isopiestic) n.a. Holmes and Mesmer [5] 

0.6433–3.1846 498.19 17 φ(isopiestic) n.a. Holmes and Mesmer [5] 

0.1069–2.8190 298.15 64 φ(isopiestic) 1 (5) This study, Table 2 

0.1148–2.7969 323.15 56 φ(isopiestic) 1 (8) This study, Table 3 

0.1–3.0944 298.15 10 φ(v.p.) 0 Pearce and Eckstrom [20] 

0.5–3.0 293.15 6 φ(v.p.) n.a. Kangro and Groeneveld [21] 

0.5–3.0 298.15 6 φ(v.p.) 0 Kangro and Groeneveld [21] 

0.279–1.600 423.15–573.15 28 φ(v.p.) n.a. Abdulagatov and Azizov [22] 

0.1–3.0 298.15 13 φ(hyg.) 0 El Guendouzi et al. [23] 

m(sat.) 298.45–383.50 11 φ(v.p.) n.a. Applebey et al. [24] 

m(sat.) 278.15–313.15 8 φ(v.p.) 0 Rockland [25] 

m(sat.) 282.35–322.25 21 φ(v.p.) 0 Apleblat and Korin [26] 

0.0070–1.0139 268.70–273.11 26 φ(f.t.) n.a. Indelli [27] 

0.025–2.0 298.15 7 Emf 0 Åkerlöf [28] 

0.05–2.9 298.15 12 Emf 0 Faverio et al. [29] 

0.1–3.0 298.15 14 Emf(t+) n.a. Mussini et al. [31] 

 308.15  Emf(t+) n.a. Sircar et al. [32] 

0.00016–0.1 c 298.15 38 ΔdilHm 2 Lange and Streeck [34] 

0.0914–3.000 298.15 19 ΔdilHm 1 (3) Thompson et al. [35] 

0.278–3.08 298.15 8 ΔdilHm 1 Solov’eva et al. [36] 

0.08–3.00 283.15 15 ΔdilHm n.a. Frolov et al. [37] 

0.05–2.99 298.15 26 ΔdilHm 0.5 (8) Frolov et al. [37] 

0.20–2.99 313.15 16 ΔdilHm n.a. Frolov et al. [37] 
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0.1728–0.9186 303.15 10 ΔdilHm n.a. Leung and Millero [38] 

0.0623–0.9409 298.15 11 cp 0 Apelblat [39] 
a Property: φ(isopiestic) denotes osmotic coefficients calculated from isopiestic 

equilibrium molalities, φ(v.p.) denotes osmotic coefficients calculated from non-

isopiestic vapor pressure measurements, φ(hyg.) denotes osmotic coefficients determined 

by the hygrometric method, Emf denotes Emf measurements with cell A or cell B that 

can be used to derive values of γ±, Emf(t+) denotes Emf measurements for a concentration 

cell with transference, ΔdilHm denotes enthalpies of dilution, and cp denotes heat 

capacities per gram of solution measured at constant pressure. 
b These are the relative weights assigned for an individual property: φ, ln γ±, ΔdilHm , or 

Cp,φ. The notation n.a. identifies studies that were not analyzed for reasons discussed in 

the text. Numbers given in parentheses are the number of data points given zero weight in 

the evaluation of the parameters reported in Table 5 for the two ion-interaction models. 

The rejected osmotic coefficients from the study of Robinson et al. [10] are those for the 

lowest two molalities of m = 0.07310 and 0.08635 mol·kg–1, and for the present study are 

identified in Tables 2 and 3. The three rejected enthalpies of dilution from the study of 

Thompson et al. [35] are those that they also rejected in their least-squares fit, and for the 

study of Frolov et al. [37] are for the five experiments with final molalities ranging from 

m = 2.83 to 2.21 mol·kg–1 and the four experiments with final molalities from m = 0.15 to 

0.05 mol·kg–1. 
c The concentrations are reported in molarity units, mol·L–1, for the studies of Lange and 

Streeck [34] and Sircar et al. [32]. For all of the other studies the concentrations are 

reported in molality units, mol·kg–1.  
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Table 5 Parameters and standard errors for the ion-interaction model applied to 

Li2SO4(aq) and Debye-Hückel limiting law slopes, at temperatures of 298.15 and 323.15 

K  

Parameter Parameter value a at T = 

298.15 K 

Parameter value a at T = 

323.15 K 

β(0)(Li,SO4)/kg·mol–1 0.121177 (0.0042) 0.128034 (0.0021) 

β(1)(Li,SO4)/kg·mol–1 1.01345 (0.0061) 1.05148 (0.0027) 

C(0)(Li,SO4)/kg2·mol–2 –1.9318 × 10–4 (0.2144) –1.6822 × 10–3 (0.0139) 

C(1)(Li,SO4)/kg2·mol–2 0.40159 (0.0252) 0.35428 (0.0139) 

α/ kg1/2·mol–1/2 2.0 2.0 

ω/ kg1/2·mol–1/2 2.5 2.5 

Aφ/ kg1/2·mol–1/2 0.391475 0.410277 

s(φ) 0.0030 0.0012 

E°(cell B)/V 2.66960 ± 0.00057  

! 

{"#
(0)
(Li,SO4)

"T
}p

/kg·mol–1·K–1 
1.7196 × 10–4 (0.0387)  

! 

{"#
(1)
(Li,SO4)

"T
}p

/kg·mol–1·K–1 
1.6418 × 10–3 (0.0070)  

! 

{"C
(0)
(Li,SO4)

"T
}p /kg2·mol–2·K–1 

–5.0022 × 10–5 (0.0126)  

! 

{"C
(1)
(Li,SO4)

"T
}p /kg2·mol–2·K–1 

3.5467 × 10–3 (0.0203)  

AH/RT 0.801844  

s(ΔdilHm)/ kJ·mol–1 0.0295  
a The  number (dimensionless) in parentheses following a coefficient value is the 

standard error divided by the coefficient value. The maximum molality to which the 

osmotic/activity model coefficients apply is m = 3.165 mol·kg–1 at 298.15 K and m = 

2.7969 mol·kg–1 at 323.15 K. The quantities s(φ) and s(ΔdilHm) are the standard deviations 

to the model fits for φ and ΔdilHm, respectively. For the standard 3-parameter Ion-

interaction model at 298.15 K: β(0)(Li,SO4)/kg·mol–1 = 0.139395 (0.0025), 

β(1)(Li,SO4)/kg·mol–1 = 1.22395 (0.0041), C(Li,SO4)/kg2·mol–2 = –1.6078 × 10–3 
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(0.0210), s(φ) = 0.0044, 

! 

{"#
(0)
(Li,SO4)

"T
}p

/kg·mol–1·K–1 = 4.8384 × 10–4 (0.0069), 

! 

{"#
(1)
(Li,SO4)

"T
}p

/kg·mol–1·K–1 = 1.5809 × 10–3 (0.0120), 

! 

{"C(Li,SO4)

"T
}p /kg2·mol–2·K–1 

= –7.8738 × 10–5 (0.0051), and s(ΔdilHm)/kJ·mol–1 = 0.045; at 323.15 K: 

β(0)(Li,SO4)/kg·mol–1 = 0.14594 (0.0017), β(1)(Li,SO4)/kg·mol–1 = 1.22638 (0.0028), 

C(Li,SO4)/kg2·mol–2 = –3.1886 × 10–3 (0.0081), and s(φ) = 0.0027. 
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Table 6 Smoothed values of the osmotic coefficients φ, mean activity coefficients γ±, 

water activities aw, and relative apparent molar enthalpies Lφ for Li2SO4(aq) calculated 

using the parameters of Table 5 for the four parameter ion-interaction model 

! 

m

mol " kg#1
 

      φ        aw 
a      γ± 

! 

L"

J #mol$1
 

T = 298.15 K 
0.01 0.8990 0.9995143 0.7154   893 

0.02 0.8720 0.999058 0.6434 1195 

0.04 0.8434 0.998178 0.5665 1567 

0.06 0.8270 0.997322 0.5212 1814 

0.08 0.8160 0.996478 0.4897 2000 

0.1 0.8080 0.995643 0.4658 2148 

0.2 0.7877 0.991522 0.3966 2617 

0.3 0.7798 0.987436 0.3604 2885 

0.4 0.7765 0.983353 0.3370 3072 

0.5 0.7756 0.97926 0.3203 3220 

0.6 0.7764 0.97514 0.3077 3346 

0.7 0.7785 0.97098 0.2979 3460 

0.8 0.7816 0.96677 0.2902 3568 

0.9 0.7857 0.96250 0.2841 3674 

1.0 0.7905 0.95818 0.2791 3780 

1.2 0.8024 0.94929 0.2722 3994 

1.4 0.8167 0.94008 0.2681 4218 

1.6 0.8332 0.93048 0.2662 4455 

1.8 0.8514 0.92051 0.2661 4707 

2.0 0.8711 0.91014 0.2675 4976 

2.2 0.8921 0.89936 0.2701 5260 

2.4 0.9142 0.88818 0.2738 5563 

2.6 0.9372 0.87661 0.2785 5883 

2.8 0.9610 0.86465 0.2841 6221 

3.0 0.9855 0.85233 0.2906 6578 

3.131 b 1.0019 0.84405 0.2954 6823 
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T = 323.15 K 
0.01 0.8941 0.999517 0.7038  

0.02 0.8657 0.999065 0.6296  

0.04 0.8354 0.998196 0.5506  

0.06 0.8179 0.997351 0.5044  

0.08 0.8061 0.996521 0.4722  

0.1 0.7975 0.995699 0.4479  

0.2 0.7748 0.991660 0.3774  

0.3 0.7653 0.987668 0.3405  

0.4 0.7607 0.983689 0.3166  

0.5 0.7588 0.979704 0.2995  

0.6 0.7586 0.97570 0.2865  

0.7 0.7598 0.97166 0.2764  

0.8 0.7620 0.96759 0.2683  

0.9 0.7650 0.96347 0.2617  

1.0 0.7688 0.95930 0.2563  

1.2 0.7783 0.95078 0.2483  

1.4 0.7899 0.94198 0.2430  

1.6 0.8031 0.93291 0.2396  

1.8 0.8175 0.92355 0.2377  

2.0 0.8328 0.91391 0.2369  

2.2 0.8488 0.90400 0.2371  

2.4 0.8653 0.89383 0.2381  

2.6 0.8821 0.88342 0.2397  

2.8 c 0.8991 0.87279 0.2418  
a The values of aw are reported to the minimum number of figures necessary to reproduce 

the tabulated values of φ to ≤ 0.0003 below m = 0.05 mol·kg–1 and to ≤ 0.0001 at higher 

molalities. 
b Assessed molality at 298.15 K of a saturated solution in equilibrium with 

Li2SO4·H2O(cr). 
c The highest investigated molalty is 2.7969 mol·kg–1. Linke [46] reported the 

composition of a saturated solution at 323.15 K from a published study that yields m(sat.) 

= 2.92 mol·kg–1. However, this value may be too low because results from several other 
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studies at nearby temperatures, when interpolated to this temperature, yield m(sat.) ≈ 3.00 

mol·kg–1 which is probably slightly more accurate. 
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Figure Captions 
 

Fig. 1 (a) Experimental φ  values of Li2SO4(aq) at 298.15 K (weighted data only) and (b) 

deviations of experimental values from the four-parameter extended Pitzer model fit 

using the parameters of Table 5 as a function of the square root of the molality. Plotting 

symbols: , this research (Table 2); , Filippov et al. [14,15]; , Robinson et al. [10]. 

 

Fig. 2 Deviations of rejected (zero-weighted) experimental non-isopiestic values of φ of 

Li2SO4(aq) at 298.15 K from the four-parameter extended Pitzer model fit using the 

parameters of Table 5 as a function of the square root of the molality. Plotting symbols: 

, Pearce and Eckstrom [20]; , Kangro and Groeneveld [21]; +, Rockland [25]; , El 

Guendouzi et al. [23].  

 

Fig. 3 (a) Experimental φ  values of Li2SO4(aq) at 323.15 K (weighted data only) and (b) 

deviations of experimental values from the four-parameter extended Pitzer model fit 

using the parameters of Table 5 as a function of the square root of the molality. Plotting 

symbols: , this research (Table 3). 

 

Fig. 4 Deviations of the experimental Emf values of Li2SO4(aq) at 298.15 K from the 

four-parameter extended Pitzer model fit using the parameters of Table 5 as a function of 

the square root of the molality. These Emfs were not used in evaluating the model 

parameters. Plotting symbols: , Faverio et al. [29] for cell B; , Åkerlöf [28] for cell A. 

 

Fig. 5 (a) Experimental-based relative apparent molar enthalpies Lφ values of Li2SO4(aq) 

at 298.15 K (weighted data only), where Lφ of the final diluted solution were calculated 

from the four-parameter extended Pitzer model fit using the parameters of Table 5, and 

(b) deviations of experimental values of ΔdilHm from the model fit as a function of the 

square root of the molality. Plotting symbols: , Frolov et al. [37]; +, Solov’eva et al. 
[36]; , Thompson et al. [35]; ■, Lange and Streeck [34]. All of the points of Frolov et 

al. were based on dilution from the same initial molality of 2.99 mol·kg–1. 
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